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We perform a Migdal-Kadanoff renormalization group calculation on an O(n) 
symmetric model on a d-dimensional hypercubic lattice, d = 2, 3. We find that in 
two dimensions the critical fixed point disappears as n = nKT ~ 1.96, which is in 
good agreement with the exact value nKT= 2. In three dimensions the fixed 
point persists much longer, albeit not all the way up to infinity. Surface critical 
phenomena in a semiinfinite O(n) model are also considered. 

KEY WORDS: Migdal-Kadanoff renormalization group; O(n) model; sur- 
face critical phenomena. 

1. I N T R O D U C T I O N  

The M i g d a l - K a d a n o f f  r eno rma l i za t ion  g roup  ( M K R G )  t1'2/ is, because  of 
its simplici ty,  one of  the mos t  widely used r eno rma l i za t ion  g roup  ( R G )  
schemes. However ,  it is not  s t ra igh t fo rward  to app ly  it to the n - componen t  
Heisenberg  model ,  a l though  special  cases (Ising and  X Y  models )  have 
received cons iderab le  a t tent ion.  In  his or ig inal  paper ,  Migdal(1) cons idered  
models  with n ~> 2 in 2 + e d imensions ,  but  to our  knowledge  the general  n- 
c o m p o n e n t  mode l  has not  been inves t iga ted  with the M K R G ,  and,  in par -  
t icular,  the interes t ing case of  n < 2 in two d imensions ,  where a cri t ical  
phase  t rans i t ion  occurs,  has not. The reason  for this is easy to unders tand .  
Even the s implest  case, with a rescal ing fac tor  of 2, requires  highly non-  
trivial  integrals  of exponent ia l s  of  do t  p roduc t s  over  the (n - 1 )-sphere, i.e., 

the unit  sphere in n dimensions .  A l though  these integrals  in pr inciple  can 
be eva lua ted  numerical ly ,  the a p p r o x i m a t e  na tu re  of the M K R G  would  not  
mot iva te  such an effort. 
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In a previous publication (ref. 4, henceforth to be refered to as I), a 
formal expression for the high-temperature series of a modified O(n) sym- 
metric model was given, introduced by Domany et al. ~5) This model was 
used by Nienhuis to obtain exact results for the critical exponents on a 
honeycomb lattice. (6'7) Because the symmetry of this model is the same as 
that of the n-component Hesisenberg model, it is widely believed that these 
results carry over to the latter model as well. Even if this not is the case, 
the Nienhuis results should be applicable to the modified O(n) model on 
different two-dimensional lattices. The purpose of the article is to show 
how to construct a Migdal-Kadanoff-like RG for the modified model, for 
arbitrary n. 

The paper is organized as follows: In Section 2 the M K R G  for the 
modified O(n) model is constructed. We will still have to integrate over the 
(n - 1)-sphere, but the integrands are now so simple that this may be done 
in closed form. Unfortunately, the form of the Hamiltonian is not conser- 
ved by the MKRG. This feature is not particular to the modified model, 
but was already encountered in the X Y  model by Jos6 et al. ~8) In order to 
obtain a working RG transformation, we truncate the recursion relations. 
Section 3 contains our results for the two- and three-dimensional O(n) 
models. Finally, in Section 4 we apply the formalism developed in this 
paper to the problem of an O(n) model with a free surface. 

2. M O D E L  A N D  M I G D A L - K A D A N O F F  R E N O R M A L I Z A T I O N  
G R O U P  

We consider the following O(n)-symmetric Hamiltonian, expressed in 
units of k8 T. 

~%:= - ~ ln[1 + J S i - S / + h "  (S i+S : ) ]  
<u> 

- v ( s i ,  sj) (2.1 
<0> 

S~= (ST) is an n-component, classical spin of unit length, located at site l, 
and the sum runs over all pairs of nearest neighbors <0">. In the Ising 
(n = 1) model, J =  tanh K, where K is the usual coupling constant. When 
n #  1, (2.1) is not completely equivalent to an n-component classical 
Heisenberg model, but because the symmetry is the same, critical 
exponents should agree with the usual ones, by universality: We have also 
included a symmetry-breaking magnetic field zh, where z is the coor- 
dination number of the lattice. To faciliate future bond-moving, we have 
split the magnetic interaction at site i on the z nearest-neighbor bonds 
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emerging from that site. There are other ways to handle single-spin interac- 
tion terms within the MKRG,  (3) but these will not be considered here. The 
partition function defined by (2.1) takes on the following simple form 

Z =  Tr 1-I (1 + J S , . S j ) -  Tr I ]  Z(S,, Sj) (2.2) 
{s~} </j> ~sj} <0>  

Note that we use Z for two different quantities in (2.2), This should not 
create any confusion, however, since one quantity has two arguments while 
the other has none. 

We now proceed to do the M K R G  on the model (2.2). On a d-dimen- 
sional hypercubic lattice, we move interaction terms perpendicular to them- 
selves, which leaves us with enhanced interactions on a decorated, more 
sparse lattice. The lattice spacing on the new lattice is b times that of the 
original one, while the bond-moved interaction is 

V(S,, Sj) = b d 'Z (S , ,  Sj) (2.3) 

This corresponds to a bond-moved partition function 

2(S, ,  Sj) = Z(Si, Sj) b' ' (2.4) 

We can now perform an exact dedecoration transformation by tracing over 
the intermediate spins on a decorated link. This constitutes the second and 
final step in the MKRG. The renormalized partition function is 

b - - 1  

Z'(S0, Sb) = C -~ Tr,..., Tr ~ 2(S~, Sk+l) (2.5) 
St Sb - 1 k 0 

If this procedure is to yield any information, Z '  should be of the same form 
as the original partition function, with J and h replaced by their renor- 
malized values J '  and h'. The constant C is the exponential of the free 
energy due to fluctuations on length scales up to b lattice constants. 
Equation (2.5 defines the renormalization transformation of J and h. 

J ' =  Rj (J ,  h) h ' =  R,,(J, h) (2.6) 

If we are only interested in fixed points with h = 0, it suffices to calculate Rj 
to zero and R e to first order in h. The RG eigenvalues follow as usual from 
(2.6). 

y,  = ln(ORj/~J) / ln(b)  Yh = ln(OR/~?h)/ln(b) (2.7) 

evaluated at the fixed point J =  J*, h = 0. The critical exponents may be 
expressed in terms of Yt and Yh, as is well-known. 
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From now on, we limit ourselves to a rescaling factor b = 2. In two 
dimensions, (2.5) becomes 

CZ'(So, S2)= Tr Z2(So, Sl) .  Z2(S1, S2) 
Sl 

(2.8) 

In order to evaluate the trace above, we must learn how to calculate 
expressions like 

Tr (So" S1)A(S1 �9 $2) 8 = Sg,..., SboS~,..., SgTr  S~1,..., SblS'I,..., S~ 
$1 $1 

The trace on the RHS was evaluated in I, where we found 

(2.9) 

Tr $7,..., S~m= C2m A ...... 2m (2.10a) 
Sl 

1 
(2.10b) 

C2m = n(n + 2 ) " "  (n + 2m - 2) 

ZJ . . . . . .  2 m  = ~ ) a b  . . . ~(2m-  l),2m _~_ permutations (2.10c) 

The symmetrized product of Kronecker symbols, A ...... 2m contains a total of 
( 2 m - 1 ) ! !  terms. Note that we have included a factor n m in the definition 
of C2m compared to I. We can now devise a graphical method to calculate 
(2.9) in a simple way, according to the following rules. 

1. If A + B is odd, (2.9) vanishes. 

2. Otherwise, write A 0s and B 2s on a piece of paper and combine 
them pairwise with a line. 

3. For  each pair 0-2, we get a factor (So'$2). Each pair, 0-0 or 2-2, 
contributes unity, because the spins are of unit length. 

4. Calculate the number of ways the 0s and 2s can be combined to 
produce this number of unequal pairs. 

5. Repeat steps 2 to 4 above until all different terms have been 
calculated. The total number of combinations should sum to 
( 2 m -  1)!!. 

6. Finally, multiply the result with the factor C2m, from (2.10). 

A sample trace is evaluated according to these rules in Fig. 2. 
We now return to the calculation of (2.8). When h = 0, we have 

CI-1 + J'(So "82)] = 1 + 2 j2 + c4,]4 _~_ 4 j2(S 0 .S2) 
n n 

q- 2c4J4(5o " $2) 2 (2.11) 



MigdaI-Kadanoff Renormalization Group for the O(n) Model 675 

a b 
, j  IV' 

C 

Fig. 1. The Migdal-Kadanoff renormalization transformation consists of two steps: (1) 
a ~ b: bond-moving; (2) b -~ c: decimation. 

Unfortunately,  the Hamil tonian  does not  retain the same form after renor- 
malization because of the last term in (2.11). Therefore, we should really 
have considered a more  general form of Z from the outset, so that  the R G  
transformation acts in some infinite-dimensional parameter  space. Of  
course, in practice we have to t runcate somewhere. To this end, we replace 
(So. S J  2 by its average over the ( n "  1)-sphere, which is 1In. This trun- 
cation is exact when n = 1, as are all subsequent t runcat ions in this paper. 
Thus the R G  t ransformat ion becomes 

C_= 1 + 2  j2_t_ 1 
/ ' /  ~..~ j4 (2.12a) 

CJ' = 4_ j2 (2.12b) 
/7 

The magnetic  field is treated along the same lines. If  we make the 
replacement 

1 
S0(S0" $2) --* Tr So(S0 - S j = - $2 (2.13) 

So /7 

the recursion relation for the magnetic  field becomes, to first order  in h 

1 ] ,  

Fig. 2. 

0-0 0-0 0 0 0-0 
I I 

2-2 2 2 
• • 

Evaluation of Trs~(S o �9 81)4(S1 " 82)  2 according to the rules described in the text. The 
trace equals C613 + 12(So" Sj2]. 
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The fixed points of (2.12) and the corresponding RG eigenvalues are 
presented in Section 3. However, it is clear that we should be able to 
improve our results by incorporating more interaction terms in the 
Hamiltonian. We therefore expand the pair interaction term in (2.1) to 

V(Si, S j ) - - ln[1  + J S , S j + K ( S ,  S])2 q - h  �9 (Si-~- S]) 

+ L.  (S,+ S;)(S,-S;)] (2.15) 

This is henceforth referred to as the improved Hamiltonian. 
The calculations follow the same path as before, although the algebra 

becomes considerably more cumbersome. The only new feature is that we 
have to truncate somewhat differently. Consider, for example, a term 
(So" $2) 4, which should be approximated by a polynomial in x - (S O �9 $2) of 
degree 2 or less. One well-defined way of doing this is to require that the 
error in this approximation be orthogonal to all second-order polynomials 
on the (n-1)-sphere .  We are then lead to consider ultraspherical, or 
Gegenbauer, polynomials, which have precisely this property. Hence, they 
are the proper generalization of the Legendre polynomials to n 
dimensions. ~ In particular we have 

r(c~ + 3) C(~)tx ~ _ ~ [F(c~ + 4) (2x) 4 (2x) 2 
4 , , -  r ( ~ )  l_ ~*~ 2! 

+ F ( 2 +  2)]  (2.16) 

where c~ = (n - 2)/2. We then get the approximation by setting C~4 ~) ~ 0 and 
solving for x 4. With this prescription, we obtain the following truncation 
scheme 

6 
(S~ S2)4 ~ ' ~ 4  (sO' s2)2 

3 
(So. s2) 3 ~ - - - = ;  (So .s2) 

n + z  

(n + 4)(n + 2) 
(2.17a) 

(2.17b) 

New interaction terms also arise from the renormalization of the sym- 
metry-breaking interactions. We extend (2.17) in the following, rather ad 
hoc, way. 

(So' S2)2 So ,~, 1 So (2.18a) 
n 

3 
(So" $2) 3 So "~ ~T-2 (So" $2) So (2.18b) 
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These manipulations give rise to a closed set of rather lengthy recursion 
relations, which we choose not to reproduce here. The thermal and 
magnetic eigenvalues now follow from the matrices of derivatives at the 
fixed point. Only the largest eigenvalues give rise to positive exponents; 
from the smaller ones one can deduce the correction-to-scaling exponents. 

We then turn to the three-dimensional case, which is analyzed 
analogously. For simplicity, we only considered the Hamiltonian (2.1) and 
not the improved version (2.15). After grinding through the algebra we find 
the following recursion relations. 

6(7 + 12n) j4 36 j6 C =  1 + 12 J2-t A 
n n2(n + 2) nZ(n + 2) 

9(n2+ 26n + 8) j8 

+ n2(n + 2)2(n + 4)(n + 6) 
(2.19a) 

CJ' -~ 16 j2 + 96 j4 144 j6 (2.19b) 
n n(n + 2----~ + n(n + 2) ~ 

15(3n + 4) j3 21(n + 4) j4 7 3(3n + 4) j2 -b -t 
1 + -n J-t n2 n~(n + 2) n2(n + 2) Ch' = 4h 

63 js  9n + 96+ 4i j6 _} 9 1 
+ n2(n + 2 - - - -  ~ -~ nZ(n+2)( n n2(n+2)zJ7 (2.19c) 

3. F IXED P O I N T S  A N D  E X P O N E N T S  

We first consider the two-dimensional recursion relation (2.12). For all 
values of n there is a high-temperature fixed point, having its basin of 
attraction in the disordered phase, at J =  0. For small n, there are also two 
other fixed points, which we identify with the critical and low-temperature 
fixed points, respectively. They are plotted in Fig. 3. The critical and low- 
temperature fixed points collide and annihilate at n = nKT ~ 1.67. We inter- 
pret this as the symptome of the Kosterlitz-Thouless transition (1~ (hence 
the index!) within the MKRG. It is interesting to compare this description 
of the Kosterlitz-Thouless transition with the mechanism that causes the 
transition in the two-dimensional Ports model to become first order as the 
number of Potts states equals four. (H) In that case the critical fixed point 
collides with the tricritical branch of the Potts lattice gas. Since in two 
dimensions both the O(n) and Potts models may be expressed in terms of a 
Coulomb gas ~7), this similarity is probably more than coincidental. 

The form of the renormalization function Rj(J) for different values of 
n, together with the corresponding RG flows, is sketched in Fig. 4. We see 
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j~ 

1.0 

0.5- 

J 

0'.5 110 lib nKT rl 

Fig. 3. Critical fixed point (lower branch) and low-temperature fixed point (upper branch) 
from the two-dimensional recursion relation (2.12). 

that the function Rj undergoes a reversed tangent bifurcation when 
n = nKT- Couplings stronger than the bifurcation value JKT flOW into this 
fixed point under the RG. However, we know that there should be a whole 
fixed line, terminating at J~zr, in the XY model. This fixed line is not 
correctly reproduced by the M K R G ,  (8) and probably not by any 
approximate position-space RG. For  n > nKT, all R G  trajectories flow into 
the high-temperature fixed point, irrespective of the initial value of Jr, so the 
O(n) model is in the disordered phase at all temperatures. 

. .p . .  -LT-U 

a. n< nKT. b. n -  nKT. c n>nKT. 

Fig. 4. Schematic behavior of the function Rj(J) for different values of n. RG flows are 
indicated on the J axis. 
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The improved model (2.15) shows very similar behavior, except that 
the Kosterlitz-Thouless transition is moved to nKT ~ 1.96. This is clearly 
much closer to the exact value from the Nienhuis solution, (6/ nKT = 2. The 
question then arises whether the M K R G  without any truncations would 
reproduce the correct nKT. Even if we are not in the position to give a 
definite answer to this question, there are arguments in favor of such a con- 
clusion. Although a fixed line was not found in Ref. 8, the corrections are 
exponentially small at low temperatures. Moreover, Migdal found that the 
critical temperature diverges proportionally to ( n - 2 ) / ( d - 2 )  close to 
n = d =  2 ~1), which indicates that something special happens for n = 2, also 
within the MKRG. However, these results were obtained for the conven- 
tional Heisenberg model. Universality implies that the modified O(n)  

model should behave in the same way, but it is not certain that universality 
survives the M K R G  approximation. 

Barber (12) considered the M K R G  for the modified 0(2)  model (he 
calls it the truncated model, but we use the word "truncate" in a different 
context). His result qualitatively agree with those of Jos6 et al., (sl which 
further corrobates the conclusion that nKT=2 within the MKRG. 
Remarkably, he finds an unphysical value for the beginning of the fixed 
line, J * ~  1.5 (the Hamiltonian is not always real if J >  1). This is clearly 
different from the fixed point at nKT found by us. We cannot offer any 
explanation for this discrepancy. 

The eigenvalue exponents y~ and Yh, obtained from the improved 
model, are shown in Figs. 5 and 6, respectively. They are also compared to 
the exact values derived by Nienhuis, (6) namely 

n = - 2  cos(2~z/t) 

y~ = 4 - 2t y~, = 1 + 3t + t/4 (3.1) 

and l~<t~<2. 
Consider first the thermal exponent in Fig. 5. Since the M K R G  effec- 

tively is a decimation, it always yields y, 4 1, while from the exact treat- 
ment, y, > 1 for n < 1. We see that the improved Hamiltonian produces a 
substantially more accurate estimate for y, when n is large, while for n < 1.2 
this prediction is indistinguishable, on the scale of the diagram, from that 
of (2.1). Consequently, we believe that the truncations do not seriously 
affect the thermal eigenvalue for n < 1.2, and that incorporation of more 
interaction terms in the Hamiltonian probably will not improve the 
estimate of y,,  except close to nKT. The serious limitation in obtaining a 
good y, estimate is inherent in the M K R G  itself, rather than being an 
artifact of truncation. 

The estimates for Yh are remarkably accurate already from (2.1). Note 
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Fig. 5. 

1.0- 

0.5 ~ 

0.'5 1.'0 115 2'.0 ~n 

Thermal eigenvalue exponent Yt in two dimensions, (1) M K R G  on the Hamiltonian 
(2.1), (2) M K R G  on the improved Hamiltonian (2.15), (3) exact result. 

Fig, 6. 

1.91 - 

1.90 

1.89 

1.88 

1.87 

1.86 

1.85 
ols 11o l'.s 2'.o '-n 

Magnetic eigenvalue exponent Yh in two dimensions. The curves are labeled as in 
Fig. 5. 
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that the whole scale in Fig. 6 only spans a region of Yh of width 0.06. 
Curiously, the improved Hamiltonian does not result in a more accurate 
Yh. Perhaps the error introduced by truncation cancels some error due to 
the Migdal-Kadanoff  approximation. 

There are a number of internal consistency checks in the above 
calculations that provide great help in preventing algebraic mistakes. We 
know that (2.1) reduces to the ordinary Ising model when n =  1, to first 
order in the magnetic field. Since all truncations in Section 2 in fact were 
exact in this case, we must recover the b = 2 M K R G  values for J*, y,,  and 
Yh obtained for the Ising model. Furthermore, at the low-temperature fixed 
point we must get J* = 1, y, = --or and Yh = 2 for this value of n. Also, the 
improved Hamiltonian reduces to the Ising model, because for one-com- 
ponent spins, (Si. S j) 2 = 1. Note that the constant term in (2.15) has been 
arbitrarily split up into two pieces, 1 and K. The values of J and K 
separately do not carry any information, but the combination J/(1 + K) is 
interesting. 

In Fig. 7, we finally present the M K R G  exponents in three dimen- 
sions. We see that y, vanishes at n = nKr ~ 7.4, due to the same mechanism 
as occurs in two dimensions. This is clearly unphysical, since we know that 
the Heisenberg model possesses a critical point for all n. The question is 
then if this vanishing fixed point is an artifact of the model, of the MKRG, 

26)__ 
2.5 _.~ 
2.4 
1 . 0 - ~  

0.5- 

, i , = 

q } 5 4 5 6 7 n 

Fig. 7. Magnetic (upper curve) and thermal eigenvalue exponents in three dimensions from 
the MKRG. 

822/43/3-4-19 
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or of truncating. The first alternative is ruled out if one believes in univer- 
sality. We think that truncations are solely responsible for the same reasons 
that lead us to suspect that the M K R G  without the truncation 
approximation would give nKT = 2 in two dimensions. However, it is not 
clear to us if nKT will move to infinity if one truncates after a large but 
finite number of interaction terms, or if infinitely many are needed to 
reproduce the correct value of nKT. 

4. O(n) MODEL WITH FREE SURFACE 

We now apply the formalism developed in Section 2 to another 
problem, namely, finding the surface critical exponents for a semi-infinite 
O(n) model. This problem has been attacked using field-theoretic 
methods, (~3'14) and special cases, like the semi-infinite Ising model, have 
been investigated with the M K R G  (15). A comprehensive review of this sub- 
ject can be found in Ref. 16. 

Consider the following modification of the O(n) Hamiltonian 

~ =  - ~ ln[1 +JijSi'Sj+ho," (Si+ Sj)] 
(U) 

(4.1) 

where all sites are now restricted to lie in the positive half-space, where 
some coordinate, say z, is non-negative. The coupling constants are all 
equal, Jo = J unless both i and j lie on the boundary z = 0, in which case 
J~= Js- Similarly, h~=hs  if both i and j are surface sites, and hij= h 
otherwise. This form of the Hamiltonian is clearly not the most general 
semi-infinite O(n) model conceivable. For  example, the interactions may 
differ from the bulk value also some distance away from the surface, as 
long as J is reached asymptotically. However, the form of (4.1) is preserved 
by the MKRG. 

Now consider the bond-moving step in d dimensions. There is some 
ambiguity as to how to shift the bonds close to the surface. We choose the 
following symmetric prescription, which has the virtue of simplicity. All 
bonds to be moved are divided into 2d-~ equally large pieces, and then 
each fraction is moved perpendicular to itself, to one of the surrounding 
interactions, which are to be strengthened. No two fractions of the same 
bond are to be moved to the same place. It is easy to verify that this recipe 
reduces to the usual M K R G  for the bulk couplings. The bond-moved sur- 
face term, on the other hand, becomes 

k's(Si, S j ) = 2  d 2Vs(Si, Sj)-~2d-3v(si, Sj) (4.2) 
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The dedecoration transformation is done in the same way as before. We 
get, with Z,  = e x p ( -  Vs) 

! 72d 2(~ S 1 ) ,  Z2 d 3(80, S1 ) C, Zs(So, $2) = T r - ~ ,  t~'o, 
Sl 

72d-2[~ 82)"  / 2 d - 3 ( 8 1 ,  82)  (4.3) �9 ~ s  \~'1~ 

In two dimensions this equation is very hard to evaluate. This is because 
there is a factor 

z l / 2 ( S 0 ,  S1)  = [1 -{- J S  0 �9 S I -}- h. (So + S 1 ) ]  1/2 (4.4) 

present in (4.3). It is not difficult to write a formal expression for Z;, but 
this involves an ( n -  1)-dimensional integral of a nonpolynomial function 
of (So'S1). Because of this difficulty, and also because a semi-infinite two- 
dimensional model is not terribly interesting (the boundary is one-dimen- 
sional!), we limit ourselves to the three-dimensional case. The recursion 
relation for the bulk coupling J is still (2.20), while we obtain for the sur- 
face interaction and magnetic field 

2 + 1  
Cs = 1 + - (J~, + 2JJs) (j2 + 2JJs)2 (4.5a) 

,, 7 

1 6 9 
C s J ' = - ( J + 2 j , ) 2 + - - ( 2 J s + J ) J 2 J - t  + 2)2 J4 J  2 (4.5b) 

n n ( n + 2 )  n(n 

Csh:=2hs[1 + ~ ( 3 J s +  2 j ) + l ( J 2 n  + 3J, J) 

1 3 1 
+ 7 (Js + J)(2J,  + J) + n(n + 2---~ j z j +  ~5 

3 
x (J3+5j2 j+3JsS2)+n2(n+2)(ss+J)J2J  

1 j~j(j2 + 2JsJ ) + 3 ] + -~ n2(n + 2) J3sJ2 (4.5c) 

In particular, if J =  0, (4.5) reduces to the formulas (2.12) and (2.14) for the 
two-dimensional bulk model. This is quite natural. If we turn off the bulk 
interactions, the surface becomes a two-dimensional system, decoupled 
from its substrate. The corresponding critical point, located at J = 0 ,  
J,  = J*, is known as the surface transition. 

In the Ising model, there are two different surface phases at bulk 
criticality, separated by the multicritical special (or surface-bulk) critical 
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i ~t~ n 

Fig. 8. Fixed points J* at bulk criticality. Ordinary transition (lower curve). Special trans- 
ition (upper curve, lower branch). Extraordinary transition (upper curve, upper branch). 

point. The two phases are the basins of attraction for the ordinary and 
extraordinary fixed points. The ordinary, special, and extraordinary fixed 
points are graphed for different n in Fig. 8. For the surface fixed point, we 
refer to Fig. 3. In Fig. 9, we show the surface eigenvalue exponents that are 
relevant (positive) at the various transitions. These exponents were 
obtained from the recursion relations (4.5), just as the bulk exponents were 
calculated in Section 2. The RG flows for different n are sketched in 
Fig. 10. For n<nKT,  the general features are the same as in the lsing 

2~ yhs[Sp/ 
Yhs(O) 

. . . . .  ~ I" IP' 
i 2 a n 

Fig. 9. Relevant and nontrivial surface critical exponents. Upper curve: Yh~, special trans- 
ition. Middle curve: Yh,, ordinary transition. Lower curve: y,~, special transition. 
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HT j HT 
. I i~ tt ) i o , ' / ,  

t~T"  " J HT 

a b c d 
Fig. 10. RG flows in the J-Js plane, according to the MKRG:  (a) n < nKT, 

~ , l s l  (c) n>n~)v,  (d) Speculation on exact RG flows if n K T = n ~ = 2 .  The (b) ~/KT < n ~ "KT' 
various fixed points are: (HT) high-temperature, (LT) low-temperature, (O) ordinary, (Su) 
surface, (Sp) special, (EO) extraordinary. 

model. At n =nKT, a free surface undergoes a Kosterlitz-Thouless trans- 
ition, while for n>nKT the surface fixed point has vanished and the 
situation is that depicted in Fig. 10b. When n increases further, the special 
and extraordinary fixed points will collide and annihilate, which happens 
when n = n~~ ~ 2.00. This phenomenon is completely analogous to the 
appearance of the Kosterlitz-Thouless phase in two bulk dimensions, and 
hence we expect an algebraic phase to emerge on the surface at bulk 
criticality. When n increases beyond -(~) we are left with the situation in " K T ,  
Fig. 10c. Here the surface is never ordered at bulk criticality, irrespective of 
the surface coupling constant. 

We know that nKT = 2, exactly. The exact value of n ~  is not known, 
but by analogy we expect it to be larger than the M K R G  prediction. On 
the other hand, it is not inconceivable that n ~  in fact is also exactly equal 
to 2, in which case the phase diagram would be that of Fig. 10d. The rows 
of crosses indicate fixed lines. Whether the three-dimensional X Y  model 
shows an algebraic surface phase at bulk criticality, or if the presence of the 
bulk is sufficient to stabilize an ordered surface phase, is something we 
believe is worthwhile to explore with more sophisticated methods. 

5. C O N C L U S I O N S  

We have applied the M K R G  to the modified O(n) model introduced 
by Domany et al., (5) in two and three dimensions. In two dimensions, the 
accuracy of the thermal eigenvalue exponent is rather poor, while the 
magnetic exponent comes out quite accurately. This is not surprising if we 
compare this to M K R G  results for the Ising model. The M K R G  also 
reproduces the disappearance of the fixed point when n increases, although 
the Kosterlitz-Thouless fixed line is not found. Finally, the semi-infinite 
O(n) model was investigated. 
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One of the main objectives here has been to demonstrate the 
usefulness of modifying the Hamiltonian. As long as the modified 
Hamiltonian retains the correct symmetry, we expect it to yield the same 
universal quantities as the original model. Such a modification was accom- 
plished in reference 5 in order to calculate the high-temperature series, 
which we extended in I to O(n) models on arbitrary lattices, and in this 
paper we have shown it to perform the MKRG. We believe that other 
methods may also be applied to the O(n) model with advantage, e.g., 
Monte Carlo renormalization. More importantly, by modifying the 
Hamiltonian to make the partition function simpler, one might be able to 
solve previously intractable problems exactly, just as Nienhuis found the 
exact O(n) critical exponents. 
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